ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Усилитель для компьютерного микрофона с фантомным питанием. Наши заблуждения Качественный микрофонный усилитель схема

Недавно здесь был обзор на микрофонный усилитель на MAX9814.
Обзор вызвал немало комментариев, значит, интерес к теме есть.
С год назад мне тоже пришлось усиленно «курить» данную тему, ибо мой хороший знакомый, сразу же после того как надумал вести свой канал на Ютубе столкнулся с проблемой записи звука.
Дело в том, что обычные компьютерные микрофоны на электретных капсюлях, что в изобилии представлены в компьютерных магазинах, более-менее сносно работают лишь в Скайпе, но совершенно непригодны для озвучки в программах захвата видео с экрана, которыми обычно пользуются блогеры создающие ролики для Ютуба.
Программы типа Bandicam, FastStone Capture работают с этими микрофонами некорректно. Звук пишется очень и очень тихо. Уровня звука в записях не хватает просто катастрофически и никакие программные уловки положения не спасают.
Бился мой товарищ, бился с этой бедой, перепробовал несколько электретных микрофонов из компьютерных магазинов - результат ноль и обратился ко мне - что делать?
Стали вместе изучать эту тему. Порыли интернет - цены на более-менее пригодные для блогеров микрофоны начинаются на Али от 3 тысяч. Есть конечно и подешевле, но микрофоны с рекомендациями стОят около 3 тыс и более. Такие деньги мой знакомый выложить был не готов, ведь на данном этапе задача была просто попробовать записать первый ролик.
Стали искать более демократичные варианты и на Али наткнулись на платку микрофонного усилителя MAX9812.
Платку купили, но когда-а-а она еще подойдет, а результат нужен был здесь и сейчас.
Таким образом дальнейший поиск вывел на статью Николая Сухова на IXBT - Комплементарный Si/Ge SRPP в предусилителе для электретника или мастер-класс по Микрокапу-11 в практике аудиофила.
Ниже схемка и картинка оттуда. В качестве активного элемента Q2 во всех случаях использовался транзистор КТ3102, а в качестве транзистора Q1, вместо ГТ310Б, пробовались и показали хорошие результаты транзисторы КТ3107, ГТ322, МП39Б без каких либо других изменений в схеме.




Спаял я ему, на скорую руку, навесным монтажем, усилок по этой схеме на КТ3102 и КТ3107, который сразу же и заработал от фантомного питания имеющегося на микрофонном входе звуковой карты. Всё это удалось впихнуть в головку уже имевшегося у него дешевого магазинного электретного микрофона. Типа такого


Он был доволен до безумия!))) Еще бы! Столько денег сэкономили!)))

Ну а я, раз мне стало известно о такой проблеме, задумал и себе сделать такой вариант микрофона. Вдруг пригодится?)
Купил обычный электретный капсюль,

также, навесом,


спаял ту же схему от Сухова и засунул всё это дело в кусок латунной трубки.


В качестве стойки использовал подсвечник, валявшийся без дела в кладовке. В итоге получился такой вот гламурненький микрофон. Набалдашник (ветрозащиту) одел для придания законченного образа.

Потом, где то через месяц, приехала платка с Али. Ей фантомного питания от компа оказалось уже маловастенько, нужно внешнее. Долго думал над оформлением. Решение пришло при посещении магазина Fix Price. Там продаются замечательные светодиодные светильнички на батарейках, которые имеют батарейный отсек на 3 элемента АА с кнопкой ВКЛ-ВЫКЛ и гибкую стоечку куда можно закрепить микрофон.

Монтажная схема соединения платки MAX9812 с внешним питанием напряжением от 3 до 5 Вольт и штекером Джек 3,5


Так как выходной сигнал микрофона с усилителем значительно выше, то есть смысл втыкать его не в микрофонный, а в линейный вход звуковой карты, который имеет лучшие параметры, чем вход микрофонный. У меня линейного входа нет, поэтому я использую микрофонный вход.
Сама платка замечательно вошла в кусочек трубки от медицинского шприца на 5 мл. В резиновом поршне шприца проделал отверстие, в которое с натягом и с герметиком воткнул гибкую стойку светильника и вуаля! изделие готово! Внутрь трубки засунул свернутый в кольцо клочок бумаги, чтобы закрыть провода припаянные к плате. По идее можно бумажной трубочкой закрыть все внутренности. Я закрыл лишь провода потому, что на платке имеется миниатюрный светодиод. Я думал, что он будет красиво светиться, но оказалось, что светит он очень слабо, эффекта нет никакого, поэтому имеет смысл завести в головку более яркий отдельный светодиод, тогда получится совсем красиво, как у микрофонов в залах заседаний у наших уважаемых депутатов. Также можно на кончик одеть какую-нибудь бомбошечку-ветрозащиту. Всё это было в планах, но, как обычно, если сразу не сделать, то уже и не сделать никогда.)

Сладкая парочка


- Напоследок тестовые записи. Первая из них делалась в декабре 2017 года, когда собиралась и испытывалась схема на дискретных элементах по статье Н.Сухова, приведенной в начале обзора. Запись непрерывная, но состоит из 7-ти кусков. В качестве элемента Q2 везде использовался транзистор КТ3102, а на место Q1 последовательно запаивались КТ3107, ГТ322, ГТ328, ГТ346, МП39Б и, последним, снова ставился КТ3107. Никакие другие элементы схемы не менялись, режимы не подстраивались, уровень записи не корректировался. Хорошие результаты показали транзисторы 3107, ГТ322, МП39Б, Лучший результат, по моему субъективному мнению, у транзистора МП39Б. Его, в итоге, я и применил в готовой конструкции микрофона которую собрал в корпусе из латунной трубочки. Итак, слушаем. Начало записи это «голый капсюль», поэтому звук очень тихий, но он есть)))

Другая запись сделана во время подготовки этого материала. Так звучит китайская сборка MAX9812 с внешним питанием от трех элементов АА и подключенная к микрофонному входу ноутбука.

И, последняя, тоже свежая, запись чисто для быстрого сравнения звучания MAX9812 и усилителя на дискретной рассыпухе по Сухову. Напомню, активные элементы в схеме КТ3102 + МП39Б

Надеюсь, что представленная информация окажется кому нибудь полезной. Всем удачи.

Планирую купить +24 Добавить в избранное Обзор понравился +72 +99

Не секрет, что знания (в широком смысле) есть субъективный образ реальности. В более узком смысле знания трактуются как обладание некоей объективной (проверенной) информацией, позволяющей решить конкретную задачу.
Насколько объективен ваш образ реальности?
Попробуйте проанализировать, какая часть ваших знаний получена истинным путём, т.е. либо из вашего непосредственного опыта, либо как результат вашего мышления, опирающегося на основополагающие истины и научно обоснованные понятия.
Это и будет то непреложное, на что вы можете полагаться при выборе аппаратуры. Остальные примерно 80-99% всех чужих пара-квази-анти-лже-псевдо-как-бы знаний, полученных из сфабрикованных статей, обильно снабжённых потрясающей красоты картинками, шестизначными ценниками и крайне субъективными словоизвержениями экспертов – одиночек я предлагаю вам незамедлительно забыть.
Но навсегда запомнить, что Научные объяснения направлены на сознание. А реклама всяких дорогих аудиофильских штучек действует на подсознание. Гораздо более эффективно действует, человеку трудно идти против своей веры. В общем, берегите, люди, голову!
В сущности, почти все, что мы считаем своим знанием почерпнуто из того, что под руку или прямо в уши из эфира попало. Мы сызмала и самым примитивным образом становимся жертвами маркетинга, паствой профессиональных и хорошо оплачиваемых "гуру". Нам много рассказали о тонкостях звучания того или иного кабеля, о всевозможных влияниях помех из сети, об ошибках при чтении лазерных дисков, джиттере……..о великом множестве процессов, которые должны влиять на звук.

Мы теперь точно знаем, чтО именно должно влиять! Но каковы эти влияния в численном выражении , и самое главное, можем ли мы это услышать?! Об этом нам как-то не сообщили.
Напомню, что влияния, схожие по результату, складываются как корень из суммы квадратов. 5% и 1% дадут не 6%, а всего 5.099%. Говоря иначе, при анализе каких бы то ни было влияний нужно знать хотя бы порядок их малости. Иначе мы просто обречены быть Дон Кихотами! Страшилок и ветряных мельниц Адепты Тайного Знания понапридумывали очень много…

Я не против эзотерики и даже некоторых суеверий, поскольку (как и все мы в этом мире) не обладаю всеобъемлющей полнотой картины! Напротив, я стараюсь во всём найти рациональное зерно; однако некоторые вещи я знаю очень хорошо.

Итак, Страшилки, простите, наши типичные заблуждения

Заблуждение Заблуждений , №000
О "мёртвости" и "скучности" неокрашенного звучания
Существует расхожее мнение, что точная аппаратура быстро надоедает своим однообразным и идеализированным звучанием.
Это безусловно было бы так, если бы со студий звукозаписи выходил всегда одинаково "стерильный", и "стандартный" звук. Конечно, никакого стандартного звука не существует ! Все без исключения музыканты стремятся придать звучанию "свой", желательно легко узнаваемый почерк и окраску, многие из них используют только любимые, затёртые до дыр примочки, положение ручек на которых хранят в строжайшем секрете и не показывают даже жёнам! Звукорежиссёры от них не отстают, ибо никому не хочется быть незаметным роботом.
Но увы, всегда находятся желающие утверждать, что все потуги вышеперечисленных людей пустая трата времени без их чудесного "тёплого" звука! Неясно только, с чего это они решили, что звук изначально "холодный".
Право же, не стоит обменивать великое разнообразие и индивидуальность возможных звучаний на единственный, пусть даже приятный для слуха звук!

Заблуждение №00
О "огрехах" звукорежиссуры
Часто пишут, что высокое разрешение аппаратуры позволяет услышать много того, чего слышать не стоит , например огрехи звукорежиссуры или скрип стульев в концертном зале; и что вместо музыки получается урок анатомии.
Как говорится, волков бояться - в лес не ходить... По своему опыту могу сказать, что слышать недостатки записи мне не очень приятно, однако не слышать её достоинств неприятно вдвойне!!!
Достоинства же случаются самые разные, мне например в некоторых моментах очень приятны сильнейшие искажения и другие фишечки от того же Alana Parsonsa, хотя кто-то назовёт их отвратительными. А его ремастированные 24-х битные записи - это вообще что-то, эти фишечки образуют замечательнейшее звуковое полотно и начинают жить своей жизнью. И особенно важно, чтобы фишки дошли до вашего слуха "как есть", потому что у окрашенных ещё и в вашей аппаратуре у них есть шанс стать просто мусором.
То, что на аппаратуре не очень качественной слышится как мусор, на самом деле часто оказывается очень даже живыми, стильными и необычными звуковыми событиями. И бесполезно спорить, действительно ли это огрехи или специально так записано, для красоты.
Ну а если нам всё это надоест, всегда можно послушать МР3 битрэйт 64 или net-радио, там-то уж точно никаких огрех звукорежиссёра не услышим, всё однозначно, ноль от единицы отличим!

Заблуждение №3.1
Повторюсь, не бывает усилителей вообще без обратной связи; например, в схеме эмиттерного (истокового, катодного) повторителя, по которой собрано 99,5% всех выходных каскадов присутствует 100%-я местная ООС по току. Проще говоря, местная ОС является неотъемлемым свойством любого усилительного каскада, и говорить о её вредности просто глупо.

Самое время разобраться, чем же общая ОС отличается от местной.
1. И в том, и в другом случае часть напряжения (тока) с выхода усилителя подаётся в противофазе на его вход.

2. И в том, и в другом случае используются схожие схемотехнические решения, обычно разница только в номиналах резисторов, которые и определяют глубину местных ОС.

3. Местная ОС лианеризует каскад усиления, но лишь до определённого предела, около 0.05 – 0.2% общих гармонических искажений. Ограничения накладывают физические свойства активных элементов. Общая ООС свободна от этого принципиального ограничения .

4. Сдвиг фазы в схеме без ОООС совершенно неопасен, поскольку не может превышать 90 градусов для каждого каскада, и условие устойчивости соблюдается автоматически. В схеме с ОООС, состоящей из нескольких каскадов этот фазовый сдвиг "накапливается", и это является единственным ограничением на глубину ОООС. .

И, если верить эзотерикам, звук "убивает" только общая ОС, но никак не местная, что позволяет локализовать проблему именно в сдвиге фазы.
Интересно, что фазовый сдвиг в усилителе понятие в некотором смысле виртуальное и для звуковых частот никак не связано с задержкой распространения сигнала во времени, от которой на самом деле очень зависит качество работы ОООС. Задержка, эквивалентная сдвигу фазы 90 градусов на частоте 20кГц – примерно 12 мксек , и никакой, даже самый медленный усилитель такой задержкой не обладает. Для сравнения, в ES6.2 задержка от входа до выхода составляет 60 нсек , т.е. в 200 раз меньше. Соответственно, общая ООС в нём работает совершенно так же, как и любая местная.

Итак, общая ООС ничем принципиальным от местной не отличается, за исключением количества охватываемых каскадов, и фазового сдвига, который "накапливается". Различие и вовсе исчезает , если построить усилитель так, чтобы сдвиг фазы от входа до выхода в звуковой полосе частот был невелик.

Но вернёмся к качеству усилителей без ООС.
С входным каскадом
всё хорошо, вносимые им нелинейности малы, поскольку мала амплитуда входного и выходного сигнала.
С каскадом усиления напряжения всё уже совсем не так здорово, его усиление обычно достаточно велико, а амплитуда на выходе сравнима с напряжением питания, и в полной мере сказываются нелинейные ёмкости и нелинейная зависимость усиления и выходного сопротивления от напряжения. Искажения, вносимые этим каскадом, составляют 0.05 – 0.5%, и вопреки широкораспространённому мнению, не очень сильно зависят от архитектуры усилителя.
Полностью (якобы) симметричные усилители показывают почти такие же результаты, как и любые другие. Происходит это по той причине, что основной вклад вносят всего два транзистора (на схеме ниже Q4 и Q7), но в хороших усилителях их всегда два, независимо от того, «симметричный» усилитель или нет. К тому же полностью комплементарных транзисторов попросту не существует, ёмкости и кривизна транзисторов разной структуры в силу технологических причин существенно отличаются.
На рисунке ниже приведены результаты моделирования "симметричного" и нашумевшего когда-то усилителя без ООС «The end Millennium »
, схема взята отсюда , простая и красивая.

Из результатов моделирования нетрудно видеть, что искажения усилителя the End Millenium без нагрузки (и даже без выходного каскада!!!) примерно 0.07% THD и 0.1% IMD. Выходкой каскад, даже тщательно отстроенный, добавит (как будет показано ниже) ещё примерно столько же, но фокус в том, что в результате перемножения спектров искажений итоговый спектр будет содержать массу гармоник и интермодуляций высогоко порядка. Видимо, этот самый мусор и объявлен "неповторимым" качеством.
О каких 0.0017% THD заявляли авторы, неясно. Достаточно смелое утверждение даже для хорошего усилителя с ОООС. Ошибочка почти в 50 раз, однако!Но, спасибо авторам, теперь нам известно, какие циферки они считают "референсными".

Выходной каскад. Самый лучший и тщательно отстроенный (в том числе в классе "А") обладает выходным сопротивлением 0.05 - 0.2 Ом и искажениями на большом сигнале порядка 0.05 - 0.2%, и до 0.4% на средне-малом сигнале
(). Результирующие искажения (в особенности на большом и сложном сигнале, где они будут хаотично меняться в зависимости от частоты, поскольку импеданс нагрузки непостоянен и на резистор не очень похож) могут быть до 0.5%. Такую «точность» можно проверять любым китайским тестером!

Итак, на что вы можете расчитывать, становясь владельцем усилителя с гордой надписью "усилитель без ООС"

Проблема, параметры Признаки Как решается Цена вопроса

Недостаточное подавление пульсаций источника питания,

0.1-1% гармоник сети на большом уровне НЧ

Небольшой фон, резко усиливающийся в присутствии сигнала, на слух проявляется как плотный, немного бубнящий и совершенно неразобранный низ
На некоторых композициях и, особенно , на АС невысокого качества может, тем не немее, произвести очень хорошее впечатление.

Огромное количество супер- конденсаторов, встроенный стабилизатор или
выносной источник питания

от 2000р
до 10000$

Значительные гармонические искажения

0.05-0.1% на большом сигнале; для выходных каскадов в классе
"АВ" 0.1-0.4%
на небольшой громкости

Нижние частоты гадят на средние, средние в свою очередь на высокие.
На слух проявляется как общая мутность, замазанная реверберационная картина и неразборчивость на насыщенных музыкальных фрагментах. Нет
деликатности и воздуха.

Непомерное усложнение выходного каскада и увеличение тока покоя, вплоть до класса "А". Мега-трансформаторы, радиаторы, и транзисторы.
Из пассивных средств - стараются маскировать искажения, дополнительно окрашивая звук.
Применяются не технические (маркетинговые) способы, "настройки" слушателя,
но по сути - никак.

от 2000р
до
5000$

Значительные интермодуляционные
искажения

0.05-0.2% на большом сигнале; для выходных каскадов в классе
"АВ" на средней
громкости 0.1-0.4%

В присутствии высоких частот средние теряют прозрачность, а высокие как-бы "отделяются". Высокие частоты с металлическим оттенком, "стоят стеной", не детальны и не воздушны. Мелкие детали и нюансы отсутствуют.

Большое выходное сопротивление.

сильная зависимость звучания от типа АС, поскольку искажения зависят от частоты в той же степени, что и импеданс.

пожизненный
поиск
"хорошей
связки "

Заблуждение №4
О необходимости длительного «прогрева» аппаратуры

Я не вижу практического смысла в длительном (более получаса) прогреве устройств, не содержащих движущихся частей или частей с очень большой теплоёмкостью. Ну не верю я в возможность сверхтонких состояний вещества в обыкновенном транзисторе или конденсаторе!
Другое дело слуховой аппарат человека! Его можно и нужно прогревать годами, в особенности, когда он начинает слышать новые синтетические звуки. На то, чтобы убедить себя что что-либо есть хорошо, требуется время.
К тому же, если изделие неделю «прогревается», то есть имеет место быстрый дрейф параметров, то за месяц оно может и «состарится», а за два месяца – умереть.

Заблуждение №5
О «неважности» гармонических искажений.

Гармонические искажения всегда считались одной из основных характеристик звукоусилительного тракта. Но, как и всё в этом мире, их правильное понимание имеет свои тонкости. Одна тонкость – при численно равных Кг усилители могут звучать совершенно по – разному из – за разного спектрального состава гармоник. Вторая тонкость – неодинаковость Кг на разных частотах. Ниже показано, что неверно рассуждать об искажениях, рассматривая только гармонические, безотносительно интермодуляционных.
Дело в том, что те же нелинейности в усилительном тракте, которые порождают гармоники, с абсолютной неизбежностью порождают и интермодуляции. И это не предмет для обсуждения, это математически доказанный факт. На самом деле гармонические искажения это всего лишь частный случай интермодуляционных, когда одна из тестовых частот отсутствует . Интермодуляции высокочастотных составляющих попадают в том числе на средние частоты, в зону наибольшей чувствительности слуха, и не маскируются ВЧ составляющими. Порог слышимости на средних частотах составляет около 0 дБ, и важно, чтобы интермодуляции были ниже этого порога. Интермодуляции первого порядка в лучшем случае равны гармоникам по амплитуде, отсюда однозначное требование: уровень гармонических искажений на высоких частотах всего тракта (в особенности этого трудно добиться в УМ) не должен превышать порога слышимости на средних частотах. Таким образом, для звукового давления, например, 96 дБ уровень гармонических искажений на ВЧ не должен быть более 0.0016% . Усилитель с настолько малыми искажениями на ВЧ демонстрирует необыкновенно тонкое, воздушно - невесомое звучание.
Это, как говорится, довод За малость искажений.
Довод Против в том, что якобы искажения более тихие, чем шумовой фон помещения, не слышны.
Предположение, что искажения менее уровня шума не будут замечены, являются, на мой взгляд, непростительным и некорректным упрощением. Для примера, мы можем прекрасно слышать тихое пение птиц за окном, но если мы возьмем микрофон, запишем, взвесим с помощью эквалайзера по кривой чувствительности слуха и на полученной, адекватной с точки зрения слуха шумовой картине помещения попытаемся найти пики сигнала, отвечающие пению, то ничего не увидим! Так произошло потому, что измеренный уровень шумовой дорожки несет в себе информацию об интегральном значении сигнала, грубо говоря это корень из суммы квадратов всех частот, каждая из которых значительно меньше по амплитуде. На спектрограмме мы бы увидели его с лёгкостью, потому что пение птиц это узкополосный сигнал, превышающий шум на наблюдаемом частотном интервале.
Существуют ещё как минимум две особенности человеческого слуха , которые не стоит игнорировать и «упрощать», и которые помогли нам услышать пение птиц на фоне урчания холодильника и храпа соседа по квартире. Это избирательность по направлению и способность «накапливать» информацию о повторяющемся сигнале, достаточно продолжительном во времени. Согласно мнению некоторых исследователей ( Стереофония . - Ковалгин Ю.А.), первая из них составляет 12-15дБ (!), информации по второй, к сожалению, найти не удалось. Переоценивать её не хочется, так же как игнорировать, поэтому возьмём какую-нибудь среднюю, например 6дБ.
В сумме получается примерно 20 дБ.
В итоге, если мы слушаем музыку в тихом помещении (20-30 дБА) мы приходим приблизительно к тем же цифрам: интермодуляционные и гармонические искажения усилительного тракта во всей полосе частот должны быть менее порога слышимости, около 0.003% и 0.002% соответственно. Естественно, предпочтительно иметь запас, просто для гарантии.

The End Millenium это усилитель мощности высокого класса в диапазоне мощностей от 99 до 300 ватт (на нагрузке 8 Ом). Применение высококачественных усилителей класса А/В достигается рядом схемотехнических решений. В первую очередь обращает на себя внимание отсутствие каких-либо цепей обратной связи, т.к. если она и корректирует ошибку сигнала, поступившего на вход, после неё это уже необратимо. Простое схемотехническое решение совместно с высоким качеством компонентов обеспечивает короткий путь прохождения сигнала с входа на выход. Использование высокотехнологичных компонентов можно отметить применением полипропиленовых конденсаторов, многоэмиттерных биполярных транзисторов и миниатюрных резисторов на стеклянной подложке.

Высшие частоты диапазона с лёгкостью воспроизводятся ультрабыстрым усилителем (линейность до > 500 000Гц), а использование четырёхступенчатого туннеля на выходе даёт фирменную быструю передачу низких частот. Общая сцена получается хорошо детализированной и прозрачной.

Принципиальная схема построения усилителя The End Millennium:

На принципиальной схеме видно насколько просто реализована идея усилителя. Отсутствие цепей обратной связи (100% без ОС) , отсутствие конденсаторов и других вносящих в сигнал искажения компонентов в цепях прохождения сигнала. Частотная характеристика линейна от постоянного тока до максимально высокочастотного сигнала - 500 000 Гц. Это, возможно, самый быстрый усилитель, который Вы только слышали! Любая часть музыкального сопровождения от глубочайшего баса до мельчайших переходов передаётся усилителем с лёгкостью.

Плата усилителя также содержит дополнительные функции, такие как защита от постоянного напряжения и защита от короткого замыкания на выходе. Защита отслеживает появление любой перегрузки на выходе и отключает усилитель на несколько секунд. Никаких ограничений по току или сигналу не используется. При обнаружении ошибки устройство автоматически выключается и ожидает нормализации ситуации. Затем оно включится и продолжит воспроизведение. Эта система настолько эффективна, что допускает короткое замыкание на выходе на протяжении нескольких дней!

Благодаря новой топологии усилителя, которая, по сути, в некоторых аспектах рушит общепринятые принципы, стало возможным построить усилитель с хорошо контролируемой звуковой картиной, подвижной сценой с высокой степенью детализации по очень доступной цене. Низкая стоимость достигается в основном тем, что Вы производите сборку сами.

Четырёхступенчатый туннельный выходной каскад позволяет точно передать усиленный от источника сигнал на мембрану звуковой головки. Не только начать движение мембраны, но и остановить его за микросекунду.

100% без ОС = 100% музыкальность

Мягкий, почти камерный звук, в основном, заслуга схемотехники усилителя, не содержащего обычной в таких случаях цепи обратной связи. Такой принцип построения обычно называют 100% без обратной связи и также используют в конструкциях других брендов усилителей высокого класса (как правило очень дорогостоящих).

В обычных усилителях (с цепью обратной связи) типичный подход - применение схем с большими коэффициентами усиления (Кус до 100 000) и большой же степенью искажения сигнала чтобы достичь необходимого усиления по напряжению. Путём сравнения формы выходного сигнала по отношению к входному, возможно корректировать ошибку в передаче и таким образом уменьшить измеренное гармоническое искажение. Однако, такая ошибка не может быть исправлена до того как обнаружена и уже воспроизведена звуковой головкой, которая тоже подключена к искажённому сигналу. Это можно сравнить с попыткой погасить волны в бассейне путём создания таких же волн в противофазе. Не практично, к тому же волны имеют слишком малую частоту, сравнимую с временем, необходимым для достижения корректирующих волн другой стороны бассейна.

Другая проблема возникает, когда Вы пытаетесь линеализировать сигнал, который был усилен нелинейным (искажающим сигнал) элементом. Возникает неизбежная модуляция, ранее называемая интермодуляционными искажениями сигнала. Это досадное недоразумение можно охарактеризовать, как-будто поют одновременно два вокалиста, а Вы слышите третий не гармоничный, раздражающий тон. В лучшем случае от этого можно избавиться за счёт потери частотного диапазона, но это всё же потеря. Другой способ услышать интермодуляционные искажения в обычном усилителе, при увеличении или уменьшении громкости сигнала.

Миллениум же воспроизводит сигнал независимо от уровня громкости и динамического диапазона. Он использует совершенно другой принцип исправления искажений. В схемах без ОС невозможно избавиться от искажений, если они уже возникли, поэтому предпринимаются все меры для предотвращения их возникновения. Ультра линейные полупроводники, высокостабильные резисторы, отсутствие конденсаторов и закольцованные дорожки печатной платы для всех цепей аудио сигнала. Все компоненты, используемые в конструкции, высочайшего класса признанных лидеров рынка производителей, которые можно также обнаружить только в высококачественных усилителях запредельного ценового диапазона.

В результате - не перегруженная сложностью схема и чистый звук без модуляций, но с хорошей детализацией и музыкальной динамикой.

Z-транзистор английского производства - это биполярный вертикальный транзистор, созданный по технологии, обычно применяемой к производству MOSFET-транзисторов. Однако, он имеет значительно меньшее сопротивление перехода (Re или Rs) чем FET или MOSFET и благодаря этому вносит меньшие искажения в сигнал.

Незначительная ёмкость перехода (6 пФ) и очень маленький коэффициент шума - также является преимуществом.

Высоковольтные цепи Миллениума

Изначально Миллениум был задуман как усилитель мощностью 120 Ватт на нагрузке 8 Ом или 240 Ватт на нагрузке 4 Ома при трансформаторном питании 33-0-33 Вольта. Но добавлением дополнительных модулей выходного каскада Вы можете использовать его при более высоких мощностях или более низких сопротивлениях нагрузки (вплоть до 1 Ома). При питании усилителя 40-0-40: один дополнительный модуль обеспечивает 180 Ватт на 8 Ом нагрузки, два модуля 350 Ватт на 4 Ома. При питании 50-0-50 Вольт: три модуля - 250 Ватт на 8 Ом, 500 Ватт на 4 Ома.

Детали дополнительного модуля размещаются на отдельной плате, которая также содержит эмиттерные резисторы и соответствующие блокировочные конденсаторы для обеспечения стабильности каскада.

Увеличение выходной мощности также возможно за счёт уменьшения сопротивления нагрузки при питании 33-0-33 Вольт, более 800 Ватт при нагрузке 1 Ом.

Во избежание потери качества, не рекомендуется применять дополнительные модули на выходе устройств, которые будут предназначены для воспроизведения ВЧ и СЧ диапазона. Параллельный модуль будет неизбежно иметь отличия в характеристиках транзисторов, что приведёт к появлению высших гармоник в сигнале, проявляющихся как агрессивный звук на высоких громкостях сигнала. Решением может быть использование раздельных выходов для НЧ и СЧ/ВЧ каналов. Несмотря на то, что это потребует применения АС с раздельными каналами, большинство современных громкоговорителей имеют эту опцию. В этом случае один выходной канал будет нагружен на СЧ/ВЧ звено, а ряд дополнительных модулей - на более мощный басовый выход, где высшие гармоники будут срезаны входным фильтром АС.

Отдельные выходные разъёмы это стандартное решение для наших наборов 180 Ватт и более.(За исключением версий с балансным входом, где параллельные выходные каскады не используются в любом случае)

Плата дополнительного выходного модуля с эмиттерными резисторами и блокирующими конденсаторами - до трёх плат одновременно. Соединяются с основной платой проводами питания и входных/выходных сигналов.

«The End» - самая удачная аудио конструкция в Скандинавии!

Любой скандинавский радиолюбитель знает предшествующую конструкцию версии 3.1. Более 3600 этих наборов для самостоятельной сборки было продано за период с 1995 по 1999 год, пока не наступил Миллениум. Почти все они в настоящее время работают в сотнях различных аудиосистемах, подтверждая необычайно высокое качество воспроизведения.

В версии "Миллениум" он улучшен во всех аспектах:

Четырёхкаскадная выходная тоннельная накачка басов

Резисторы на стеклянной подложке для лучшей линейности и однородности

Усиление сигнала специально разработанными Z-транзисторами с очень низким Re и выходной ёмкостью (Сс=6 пФ).

Низкое искажение сигнала благодаря ультра линейной топологии ядра.

Детализация высоких частот за счёт применения блокировочных конденсаторов 4,7 мФ с полипропиленовым сепаратором на шинах питания.

Все дорожки печатной платы, относящиеся к аудиосигналу, имеют скруглённые переходы. Это препятствует возникновению стоячих волн и способствует более точному и правильному воспроизведению.

Кроме того, несколько дополнительных функций было добавлено на компактную, изготовленную из высококачественного Fr4 стеклотекстолита плату. Отключаемая функция защиты среагирует на появление постоянного напряжения на выходе 5 мВ, а эффективная защита от короткого замыкания сохранит Ваш усилитель даже при экстремальных перегрузках.

Система смещения при условии соблюдения температурных режимов для напряжений питания +/- 100 Вольт обеспечивает длительную работу при любом применении. Миллениум также стабилен при заниженном питании до +/- 10 Вольт.

Соображения по питанию

Питание усилителя очень критично для качества воспроизведения!

Если Вы задумали построить совершенный источник питания для усилителя, наиболее привлекательным будет использовать батарею (Шведских) конденсаторов RIFA от 100 000 мкФ каждый. Добавьте к ним блокировочные индуктивности, чтобы уменьшить зарядные токи, и Вы получите лучший источник питания для аудио системы.

Однако цена и размер установки при таком подходе делают её менее привлекательной. Это слишком дорого и займёт примерно столько же места, сколько занимает небольшой холодильник. Поэтому мы разработали "Супер-Пупер" Блок Питания более рационального построения, чем громоздкое, но простое решение от RIFA.

120 000 мкФ американских низкоимпедансных конденсаторов от ChemiCon распределены для отдельного питания мощных и чувствительных сигнальных каскадов, таким образом, любые провалы питания, вызванные перегрузкой мощных каскадов, не отразятся на входных и драйверных цепях.

Кроме того, набор поликарбонатных конденсаторов способствует уменьшению высокочастотных шумов от выпрямителя.

Эти два 4,7 мФ конденсатора отмечены на плате, но теперь устанавливаются на плате усилителя, а не БП.

Выход AUX, используется для питания усилителя напряжения и драйверов.

Запас емкостей в 120 000 мкФ обеспечивает полную стабильность и достаточную мощность для питания даже при критических нагрузках. Марка ChemiCon ранее была известна как Sprague.

Полная схема усилителя The End Millenium

Масштаб не 1:1

Размер платы: 107х54мм

Фото платы усилителя

"Hatsink placed here" - Место установки радиатора

"BIAS Testpoint" - Контрольная точка установки смещения

Инструкция по сборке

Сборка Миллениума не отличается сложностью и занимает не много времени.

Начните с того, что высыпите все детали из пакета на стол.

Нагрейте паяльник.

Начните с установки низкопрофильных компонентов, таких как резисторы и триммеры. Проверяйте нумерацию элементов на схеме с написанной на самой плате и сравнивайте с цветовым кодом, напечатанным в таблице на предыдущей странице. Если Вы уверены, что всё установлено правильно, приступайте к пайке. После этого установите конденсаторы, сначала маленькие, затем по больше. Запаяйте.

Два электролита на 470 мФ устанавливаются с обратной стороны, не перепутайте полярность, полоса, обозначающая минус, на обоих обращена к ближнему краю платы.

Установите их на плату, перед тем как обрезать выводы и припаяйте.

Теперь установите Т9 и драйверы, (внимательнее, они устанавливаются каждый со своей стороны) так высоко, как позволяет длина выводов. Они должны стоять под правильным углом по отношению к плате.

После этого прикрутите драйверы на радиатор, используя короткие 3мм винты и маленькие прокладки. Не допускается наличие на них смазки и они должны плотно прилегать к прокладке без воздушного зазора. На картинке видно, что 4м7 конденсаторы также уже установлены, но будет немного проще, если с этим подождать.

Положите термопрокладку на место крепления выходного транзистора и установите картонные шайбы под винты его крепления. Не допускается применение смазки!

Закрепите каждый Sanken на ПРАВИЛЬНОЕ место на плате, металлической подложкой к прокладке. Следите, чтобы под прокладкой не было посторонних включений (стружка, грязь). Используйте прокладку и винты большего размера. Закрутите винты насколько возможно крепче, но так чтобы их не сорвать.

Затем припаяйте их к плате и подрежьте выводы.

Теперь установите конденсаторы 4,7 мФ с обратной стороны платы. Подпаяйте входные и выходные проводники как показано на рисунках.

ВНИМАНИЕ!

Если Вы используете "Супер-Пупер" БП с раздельными трансформаторами для входных каскадов и драйвера (рекомендуется), не забудьте разрезать проводники на печатной плате между + и Aux+, а также - и Aux-

Подключение входных разъемов (небалансный и балансный соответственно)

Соединение дополнительных модулей с основной платой

Настройка

Подключите мультиметр (mV) между двумя контрольными точками на плате, см. стр.10.

Подайте напряжение питания на усилитель, НЕ подключайте пока нагрузку.

Выставьте подстроечным резистором регулировки смещения (501) напряжение 10 mV если Вы будете использовать усилитель с нагрузкой 8 Ом или 20mV при 4 Омах.

Подключите мультиметр к выходным клеммам усилителя. Выставьте подстроечным резистором регулировки постоянной составляющей (103) возможно близко к нулю. Отклонения +/- 50 mV находятся в пределах допуска при использовании любых АС.

Проверьте ещё раз напряжение смещения, возможно, его придётся подкорректировать. Уход параметра +/- 20% от значения находится в пределах допуска.

Повторите процедуры для другого канала. Если напряжения отличаются от указанных, пожалуйста, свяжитесь с LC Audio, прежде чем продолжить.

Подключите Ваши громкоговорители к усилителю и начните воспроизведение! Надо понимать, что для входа в рабочий режим требуется 1-2 недели обкатки усилителя.

Использование защиты от постоянного напряжения на выходе

В Миллениуме имеется встроенная защита от постоянного напряжения на выходе, которую вы можете использовать на своё усмотрение. Вы можете отключить её или вообще исключить из схемы, если желаете. Некоторые рекомендации по этому поводу:

Некоторые эксперты склоняются к тому, что схема защиты влияет на передачу низких частот. И в некоторых случаях они правы. Бас становится более мягким и размытым. Это происходит, потому что защита в некоторых усилителях работает на частотах среза входного фильтра гораздо более высоких, чем это необходимо, скажем 10-20Гц.

Защита Миллениума, благодаря нашим усилиям, не оказывает влияния на басовую секцию, т.к. частота среза фильтра ниже 0,5 Гц и установлен фильтр второго порядка вместо обычного для таких случаев первого. Это означает что характеристика среза фильтра более крутая, и влияние на аудио сигнал практически отсутствует (на 20 Гц влияние фильтра близко к нулю)

Конденсаторы фильтров С12 и С14 изготовлены в пластиковых корпусах и с не магнитными выводами, так что если весь частотный диапазон сигнала пройдёт через них, они выдержат любой, самый притязательный аудио тест. Однако, через них не проходит сигнал выше 0,5 Гц.

Необходимо использовать систему защиты если вы используете электростатические акустические системы, поскольку их сопротивление постоянному току близко к нулю.

Вы можете НЕ использовать систему защиты, если Вы используете обычные динамические системы, поскольку некоторые из них допускают постоянное напряжение на входе до 200mV без ущерба для себя.

*Название темы на форуме должно соответствовать виду: Заголовок статьи [обсуждение статьи]

Я уже давно борюсь со своей звуковой картой, а именно с ее "микрофонным" входом. Моими прошлыми попытками сделать нормальный усилитель для микрофона были . Мне там не понравилось большое количество шумов и зависимость от напряжения питания, и с фантомным питанием. У него есть свои плюсы, но он также шумел... Долго искал причину шума и все-таки нашел ее. Вся проблема была в том, что у меня ползунок "громкость микрофона" - стоял на максимуме. Понизив его уровень я избавился от одной проблемы и получил другую: усиления предыдущих УНЧ не было достаточным. Поэтому решил сделать усилитель для микрофона с достаточным усилением, низковольтным питанием и малым потреблением тока. В ходе расчетов получилась хорошая схема, с легкодоступными деталями - в основе её ОУ LM358. И теперь я делюсь ею с вами:

Моно-версия активного микрофонного усилителя

Стерео-версия активного микрофонного усилителя

Кто захочет ее делать, вот маленькое напоминание о распайке штекера аудио:

Теперь кратко опишу ее работу. Питание - литиевая батарейка от 3 до 4.2 В. Ток до 1 мА. Усиление выбирается по формуле:

Ку = -(R2/R1)

На схемах выходит усиление в 100 раз (100к/1к). Минус в формуле из-за того, что усилитель инвертирует сигнал на выходе. Для меня это не критично, да и на звук это сильно не влияет. Кому интересно как я его рассчитывал и подбирал номиналы, запускал в симуляторе, вот видео:

Так как большинство пользователей сайта пользуются - я перенес печатную в формат LAY6. Сразу предупреждаю - печатки надо "зеркалить".

Использовал для изготовления платы ЛУТ. Обо всем этом в подробностях смотрите также на видео:

Кстати, это видеоролик записывал уже с этим усилителем, так что можно оценить качество записи. А выглядит полностью собранный усилитель так.

Для эстрадных оркестров, школьных радиоузлов или переговорных устройств часто нужен предварительный усилитель к низкоомному микрофону или используемой в той же роли динамической головке. Схемы таких усилителей предлагает журнал «Функаматер» (ГДР) .

Первый, наиболее простой, применяют, когда микрофон удален от основного усилителя на значительное расстояние. Напряжение питания 7.5-12 В поступает к предусилителю по «звуковому» кабелю с заземленной оплеткой. Транзисторы (V1 и V2) дают большое усиление сигнала. Конденсатор С2 устраняет самовозбуждение. Режим работы устанавливают с помощью подстроечного резистора R3 таким образом, чтобы на коллекторе V2 было «половинное» напряжение питания. Потребляемый ток = 1.5 мА.

Второй усилитель предназначен для совместной работы с высококачественной аппаратурой. При увеличении сопротивления R5 = 100 ком усиление устройства максимально (51 дБ) . Чувствительность 3-8 мВ, оптимальное сопротивление микрофона = 200 ом. В верхней точке R2 напряжение = + 6 В, а на коллекторе V1 напряжение примерно + 2 В.

Оба усилителя собраны из малогабаритных деталей и помещены в жестяные футляры размерами со спичечный коробок и заземлены. В устройствах применены кремниевые транзисторы малой мощности: V1 малошумящий, например КТ312Б, V2 - КТ306 , КТ315 , КТ342 с любым буквенным индексом. Журнал «М-К» № 2 , 1985г.

Нестандартное включение микрофона.

Размещение микрофонного усилителя в непосредственной близости от микрофона ослабляет требования к экранировке соединительных проводов и улучшает отношение сигнал / фон. Однако при этом возникает новая проблема, связанная с питанием микрофонного усиливстроенная батарея требует частой замены, а использовать дополнительный провод питания не всегда удобно.

На рисунке приведена схема двухкаскадного микрофонного усилителя питание которого осуществляется по сигнальному проводу. В основной усилитель при этом нужно добавить лишь один резистор R4 , служащий нагрузкой микрофонного усилителя и разделительный конденсатор С2 .

https://pandia.ru/text/78/153/images/image004_83.jpg" width="380" height="339 src=">

Он недорогой, стоит примерно 120 руб.

А вот его схема:

https://pandia.ru/text/78/153/images/image006_61.jpg" width="623" height="389">

Pис. 4 . Электрическая схема микрофонного усилителя.

Ещё разные микроусилители на микросхемах

Эти усилители используются для усиления сигналов, имеющих малую величину (0.2-2 мВ) . Входное сопротивление микрофонного усилителя, при котором обеспечивается максимальное отношение сигнал / шум, выбирается в 3 раза больше внутреннее сопротивление.

Достаточно простой получается схемная реализация микрофонного усилителя при использовании операционного усилителя. Операционный усилитель следует выбирать по минимальному значению шума, приведенному ко входу. Из отечественных операционных усилителей больше других подходят КМ551УД2А (Uвх. шума = 1 мкВ) или К157УД2 (Uвх. шума = 1.6 мкВ) . Из зарубежных операционных усилителей можно рекомендовать NE5532 .


Входное напряжение 1 мв,
Номинальное выходное напряжение 100 мв,
Отношение сигнал / шум = 56 дб,
Рабочий диапазон частот гц,
Коэффициент гармоник 0.05 %

Операционный усилитель включен по схеме инвертирующего усилителя. Коэффициент усиления определяется отношением резисторов R1 / R2 и равен 100 . При замене операционного усилителя К157УД2 на КМ551УД2А отношение сигнал / шум возрастет до 60 дБ.

https://pandia.ru/text/78/153/images/image009_117.gif" width="644 height=370" height="370">

На рис.3 приведена схема микрофонного усилителя с симметричным входом, в котором функции трансформатора выполняет дифференциальный усилитель на операционном усилителе DА1 .

На DА2 собран сумматор двух сигналов. Подавление помех будет тем больше, чем выше степень согласования резисторов RЗ и R4 , R6 и R7 , R8 и R9 , R10 и R12 , R11 и R13 .

Микрофонный усилитель имеет следующие параметры:
Номинальное входное напряжение = 2 мв,
Номинальное выходное напряжение = 100 мв,
Отношение сигнал/шум 60 дб,
Коэффициент гармоник 0.5 % ,
Диапазон воспроизводимых частот гц,
Минимальное сопротивление нагрузки = 10 ком.

Коэффициент усиления микрофонного усилителя зависит от положения переключателя S1 .

При разомкнутом переключателе К = 50 , при замкнутом = 100 .